平成26年度山口県産業技術センター研究テーマ及び概要

研究テーマ名		研	究	概	要
加工技術	鋼板の塑性加工における曲 率制御技術に関する研究	県内での生産量が多く、 に関して、薄板(板厚3m 制御技術の確立を目指	m以下)の		
	炭素繊維強化プラスチックに おける研削穴開けの高速化 に関する研究	研削加工によるCFRPの 工時間が長いことが課是 を検討し、研削加工によ	亙であった。	本研究では、	加工条件や砥石形状
設計制御	ねじり加工を用いた微小不連 続曲面成形技術の開発	ステンレス製微小平板のれる加工条件の確立を 検討を行う。			
	水素及び低カロリーバイオガ ス対応ロータリーエンジンコ ジェネレーションシステムの開 発	県内産資源である水素/ タリーエンジンを用いて、 きない純水素及び低カロシステムの開発を行う。	従来のコミ	ジェネレーション	ノシステムでは発電で
電子応用	EMC試験における各公設試 間の相関性の検討	「簡易電波暗室の1GHzi 大して、各々の測定に対 試験機からの出力波形の 関性や問題点を把握する 援を向上させる。	けして共通の の解析等を ることにより	D試験体を用い 行い、各公設 J、EMC測定の	いた実測値の比較や、 試間の試験設備の相)精度を高め、企業支
	画像処理による移動微小傷 の自動検出技術に関する研 究	ステンレス箔上の傷は、 れ、種類によって形状や 画像処理手法では検出 見え方が異なる。本研究 討・構築を行う。	色、大きさ できない傷	は様々である。 も多く、照明の	。単純な二値化などの 照射方向によっても
材料技術	ポリ乳酸をマトリックスとする 繊維複合材料のリサイクル技 術の開発	近年、ケナフボード等の酸が、廃材として大量に収して再利用するための	排出されて	いることから、	
	スズ合金めっき皮膜を負極に 用いたリチウムイオン電池の 開発	リチウムイオン電池負極 チウムと反応しないコバ めっきの制御技術を開発 る。	ルト、ニック	「ル、銅と高容:	量を持つスズとの合金
	プラズマCVDによるDLC量産 化に向けた基礎的検討	量産化に向けた基礎的に及ぼす影響を検討する 実施する。			
	高熱伝導性フィラーのための 表面処理技術の開発	樹脂の熱伝導性に影響 フィラー表面状態の制御 特に、水に対する反応性 ネシウム)は、耐水性と	を目的とし Eの高いフィ	、その表面処プラー(窒化ア)	理技術の開発を行う。 レミニウム、酸化マグ
	県産天然油脂の搾油・精製・ 利用技術の開発	山口県には多くの油脂原 その大部分は利用されて センターで保有する、油 がもつ特徴を活かした製	ずに廃棄物 脂の分析、	として処理され 精製技術を用	いている。本研究では、
環境技術	搾汁残渣からのβ-クリプトキ サンチン抽出工程の効率化	搾汁残渣である柑橘表別 キサンチンを簡便且つめ す手法について検討を行	での商品開		

平成26年度山口県産業技術センター研究テーマ及び概要

研究テーマ名		研	究	概	要	
環境技術	木質バイオマスを用いた炭化 物の成形加工技術の開発	ので、これを解決する	るため木質バイ	オマスより抽	やすい等の問題がある 出した部分液化物や いた炭化物の成形加コ	炭
	粉体材料設計による多孔質セ ラミックスの焼成プロセスの改 善		低温(低エネル	ギー)で作製		
デザイン	住宅熱的快適性向上のため の行動的適応型仕掛けの開 発	適環境を実現する方 が大きい。これに対し	法は、多くのエン、熱的快適域で	ネルギーを使 を広げるため	さでエアコン等により 使用するため環境負荷 の仕掛けを設備した 環境を実現することを	节 旧
	操作パネルのユーザビリティ 評価技術に関する研究				正するため、操作パネ えて企業との共同に	
	樹脂系3Dプリンターのモデル の評価に関する研究		件の指針を得る	らために3D	ることを目的とし、成用 プリンターで造形した ⁼ C測定・評価を行う。	
食品技術	食品系廃棄物に含まれるポリ フェノール類利用技術の開発		った一連の加工	操作における	Q、利用することを目 打 るポリフェノール類の打	
	清酒製造工程における汚染 微生物生育抑制技術		酸菌)を積極的に		の温床となりやすい(ことで、有害微生物の	
	やまぐち山廃酵母の実用化に 向けた製造手法の検討				いて、その生理的特 D山廃清酒の製造をB	
	山口県産茶を用いた和紅茶 の開発				りとし、茶葉(ヤブキタ より製造した紅茶のキ	
	乾燥技術を用いた水産乾燥 品の品質設計とその評価	水産干物製品の香味 に、従来製品と差別			支術を開発するととも を開発する。	
光応用	LED等光技術を応用した農業 支援技術の開発	農業を高度化するLE 射装置の光学設計、				照