

バーチャル3Dものづくり支援センターのホームページ(一部) (ホームページから機器情報の入手、造形に関する相談・依頼が可能です)

バーチャル3Dものづくり支援センターの機能

利用可能な3Dプリンター	材 料	造形サイズ	主な特長
粉末焼結式樹脂造形機	ナイロン、ポリプ	280×280×370	サポート材を使用しないため、複雑な
	ロピレン、耐熱樹	[mm]	形状の造形が可能。
	脂	(幅×奥行×高さ)	
金属積層造形機	ステンレス、アル	280×280×370	金属属粉末材料を積層していくこと
	ミ、チタン、マルエ	[mm]	で、従来の除去加工では難しい複雑
	ージング鋼、青銅	(幅×奥行×高さ)	な形状の造形が可能。
樹脂積層式造形機	ポリカーボネート	280×280×370	強度・耐久性のあるポリカーボネイトを
		[mm]	使用し、造形時の収縮や変形も少ない。
		(幅×奥行×高さ)	
インクジェット式光造形機	アクリル系光硬化	280×280×370	積層ピッチが28μmと小さく、造形モ
	樹脂	[mm]	デルの品質が高い。ただし材料の耐久性
		(幅×奥行×高さ)	は低い。
機械設計支援システム			構造・機構等の現象について、目標と
(構造最適化)	_	_	する重量や剛性等や制約条件(変位、
			応力等)に応じた最適形状について
			シミュレーションが可能。

バーチャル3Dものづくり支援センターで利用可能な3Dプリンター等

